
1.2 Graph Drawing Techniques

Graph drawing is the automated layout of graphs
We shall overview a number of graph drawing techniques

For general graphs:
Force Directed

Spring Embedder
Barycentre based

Multicriteria optimization

For specific graph types:
Planar
Hierarchical
Orthogonal



Graph Drawing is Application Specific

Keep the graph theoretic structure of the graph and map 
the following applications to the graph:

1. As a UML diagram with 1: 'Person', 2: 'Teacher', 3: 'Class', 
4: 'Student'. Person is a generalization of both Teacher and 
Student. The edges connecting Class to Teacher and 
Student are associations.

2. As a representation of a round trip travel plan. 1: 
‘Corvallis', 2: ‘Miami', 3: ‘New York', 4: ‘Los Angeles'

Redraw the graph in a good
way for each application

Task

4

1 3

2



Force Directed Graph Drawing Methods

A design for layout of graph data structures
Eades’ Spring Embedder

P. Eades: ‘A Heuristic for Graph Drawing’. Congressus
Numerantiom 42, 1984. pp. 149-60.

Here we will look at force directed approaches in 
general and overview of energy systems



Principles of Spring Embedding

A heuristic approach

We need to calculate
1. An attractive force on each vertex, treating edges as 

springs, forcing the vertices together
2. A repulsive force on each vertex, treating vertices as 

charged particles and calculated from distance to each 
other vertex

Then we move each vertex with the balance of the 
total force



Algorithm

SPRING(G:graph)
place vertices of G in random locations
repeat M times

calculate the force on each vertex
move the vertices f*(force each vertex)

draw graph

If d is distance between two vertices
Attractive force = -k*d
Repulsive force = r/d2

Constants k, r, f, M need to be set by the implementer 
(typically through trial and error)



Notes on the algorithm

Each force calculation is the sum of each edge 
connection and every other vertex. Consider it a vector 
- it needs direction + amount

Time complexity O(M*N2) because calculating distance 
between all vertices is N2

Hookes law (linear force) used for edges, but Eades
originally used a logarithm

Inverse square force for vertices - less repulsion when 
further apart

Why have most implementations moved from a 
logarithmic edge force to a linear one?Question



-50
-40
-30
-20
-10

0
10
20
30
40
50

5 6 7 8 9 10 11 12 13 14
distance

fo
rc

e

attractive force
repulsive force
net force

How the forces work

Length and direction of arrows indicate the force on a 
vertex. Here for only 2 vertices

Equilibrium



Exercise

Estimate the movement of vertices in this graph for 
one iteration of a spring embedder
Guess a final layout after 100 iterations

1

5

3

4

2

Task



Generalizing force directed approaches

A force directed graph drawing system consists of:

1. Model: a force system calculating force based on the 
vertices and edges

2. Algorithm: a method for finding the equilibrium state 
of the force system, i.e. where the total force on each 
vertex is 0

The trick is to find a force system that is both 
quick to calculate and forms a good graph 
layout



Other force directed methods

Barycenter based approach
force moves vertices towards their barycenter, the 
average position of neighbours
Force based on a graph theoretic notions
attempt to get distance between vertices 
proportional to graph theoretic distance
Magnetic field ideas
parallel, radial and concentric fields
Energy functions that use aesthetic criteria



Barycentre example

Several iterations of moving vertices to the 
average position of their neighbours
Needs some fixed vertices or all the vertices will 
end up at the same position
Works well for quick drawing of very symmetric 
graphs (and that have got obvious fixed vertices)



Pros and cons of force directed methods

Pros
Works well on sparse, smallish graphs
Easy to understand due to force analogy
Quick to implement
Can be used effectively with other methods
Cons
Different results with the same graph
Use with straight line, connected graphs only
Indirect definition of good aesthetics



Multicriteria optimization for graph drawing

Graph Drawing is just another optimization problem

Hence if we can measure the quality of a layout, we 
should be able to apply standard search mechanisms 
to improve the quality of the layout. Current search 
methods used:

Simulated Annealing
Hill Climbing
Genetic Algorithms



Aesthetic metrics for graphs

edge crossing (total)
edge length (total, or variance)
edge bends (total)
graph size/aspect ratio (various ratios possible)
vertex separation (e.g. variance of distance to 
nearest neighbour)
angular resolution

This attempts to avoid very small angles 
Measured by variance of inverse angle
Threshold often used

Application specific measures can be defined.



Putting the multicriteria optimizer together

Measures are combined in a weighted sum
The weights are used to normalize the measures, and 
define priorities

In a simulated annealing approach, successive alterations 
are made to the graph (for instance, random vertex 
movement) and improvements to the fitness mean the 
change is kept.

In an effort to avoid local minima, some bad moves are also 
retained.

Criteria are not orthogonal and so care needs to be taken 
when assigning weights



Planar graph layout

Some graphs can be guaranteed to be laid out 
without edge crossings
There are fast algorithms (linear time) to detect 
planar graphs and generate plane layouts

Interestingly, the problem of finding the minimum 
number of crossings for a non-planar graph is NP-
Complete

However, plane layouts often need improvement, 
through e.g. Force directed methods



Example plane layout

Often a planar layout algorithm relies on numbering 
vertices between a source and target.

2

t

6

1

3

s

4

5



Hierarchical drawing

Polynomial time complexity for graphs without cycles. 
Typically relies on layout on an integer grid
First, assign layers to vertices

Simple layer assignment (shortest depth) relies on 
placing vertices in their first available layer, which can 
lead to ‘layer bloat’

Second, assign vertices to locations on layers. Various 
mechanisms are possible:

The x-barycentre of parents or children vertices
Minimal crossing assignment
The method must address conflict resolution

Dummy vertices are used when an edge crosses a level



Hierarchical example

Here we use a left to right approach to layout



Orthogonal layout

Here, edges run only vertically or horizontally in a 
plane graph
Typical layout of a PCB, and some software 
engineering diagrams
Various algorithms generate layout in fast time

A

C

BED



Using specialist techniques for general graphs

If we have a ‘nearly’ planar graph, or a diagram with 
a sense of flow, but some cycles, we can:

Planarize a graph by adding new vertices or 
removing edges, then once laid out return the 
diagram to the previous topology

Make a graph cycle free by reversing edge direction, 
again returning the layout to the previous topology



Summary

The Spring Embedder produces a fairly symmetric 
graph with even, short edge length and an even 
vertex distribution that is fairly easy to implement

Multicriteria approaches are more flexible, but 
typically take longer to run and is more effort to 
implement

Hierarchical, Planar and Orthogonal layout 
methods run quickly, but only on specific graph 
types


